SML150FB12 ### Attributes: - -aerospace build standard - -high reliability - -lightweight - -metal matrix base plate - -AIN isolation ### **Maximum rated values/Electrical Properties** | | | | | | 4 | | | | | |--|----------------------------------|------------------------|----------------------|----------------------|-----------------------------|-------|------|--------------------|----------| | Tc=25C,Tvj=175C Ic 200 Repetitive peak Collector Current tp=1msec,Tc=80C I_{crm} 300 A Total PowerDissipation Tc=25C P_{tot} 850 W Gate-emitter peak voltage V_{ges} $+/-20$ V DC Forward Diode Current I_f 150 A Repetitive Peak Forward Current I_f 300 A I²t value per diod V_f V_f V_f V_f Isolation test voltage RMS, 50Hz, t=1min V_{isol} V_f V_f Collector-emitter saturation voltage Ic=150A,Vge=15V, Tc=25C Ic=150A,Vge=15V, Tc=125C $V_{ce(sat)}$ V_f V_f Gate Threshold voltage Ic=6.4mA,Vce=Vge, Tvj=25C V_f V_f V_f Input capacitance V_f V_f V_f V_f V_f Reverse transfer Capacitance V_f V_f V_f V_f V_f V_f Collector emitter cut off V_f V_f V_f V_f | Collector-emitter Voltage | | | | Vce | 12 | 200 | V | | | Total PowerDissipation $Tc=25C$ P_{tot} 850 W Gate-emitter peak voltage P_{tot} P_{to | DC Collector Current | | | | | | | A | | | Gate-emitter peak voltage | | | tp=1msec,Tc=80C | | I _{crm} | 300 | | A | | | DC Forward Diode Current Repetitive Peak Forward Current $I_{fm} = I_{fm} I_{fm$ | Total PowerDissipation | | Tc=25C | | P _{tot} | 850 | | W | | | Current Repetitive Peak Forward Current I^2t value per diod $Vr=0V$, $tp=10$ msec, $Tvj=125C$ I^2t RMS, 50 Hz, $t=1$ min V_{isol} I^2t value per diod $Vr=0V$, $tp=10$ msec, T^2t I^2t I | Gate-emitter peak voltage | • | 11/4 C | | ges | +/-20 | | V | | | Forward Current I²t value per diod $Vr=0V$, tp=10msec, $Tvj=125C$ Isolation test voltage RMS, 50Hz, t=1min V _{isol} 2500 V Collector-emitter saturation voltage Ic=150A,Vge=15V,Tc=25C Ic=150A,Vge=15V,Tc=125C Gate Threshold voltage Ic=6.4mA,Vce=Vge, Tvj=25C Input capacitance f=1MHz,Tvj=25C,Vce=25V, V _{ies} V _{isol} 1.70 2.15 V V V Reverse transfer Capacitance f=1MHz,Tvj=25C,Vce=25V, V _{ies} V _{ies} 10.5 InFut Collector emitter cut off Vce=600V,Vge=0V,Tvj=25C Vres I 5 m/F | | | Y _ O \ | | I_{f} | 1. | 50 | A | | | | | | tp=1m ec | | I_{frm} | 300 | | A | | | Collector-emitter saturation voltage $Ic=150A, Vge=15V, Tc=25C$ $Ic=150A, Vge=15V, Tc=125C$ $Ic=1250A, Tc=125C$ $Ic=1250A, Tc=125C$ $Ic=1250A, Tc=125C$ $Ic=1250A, Tc=125C$ $Ic=1250A, Tc=125C$ $Ic=1250A, Tc=125C$ Ic | I ² t value per dioce | | | | I ² _t | 4600 | | A ² sec | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Isolation test voltage | | RMS, 50Hz, t=1min | | V_{isol} | 2500 | | V | | | Input capacitance $f=1MHz, Tvj=25C, Vce=25V, C_{ies}$ 10.5 nF $Vge=0V$ | | | | V _{ce(sat)} | | | 2.15 | V
V | | | | Gate Threshold voltage | Ic= | 6.4mA,Vce=Vge, Tvj=2 | Vge _(th) | 5.0 | 5.8 | 6.5 | V | | | Vge=0V Collector emitter cut off Vce=600V,Vge=0V,Tvj=25C I _{ces} 1 5 mA | Input capacitance | | | | C _{ies} | | 10.5 | | nF | | | Reverse transfer Capacitance | | | | C _{res} | | 0.5 | | nF | | | | | | | I _{ces} | | _ | 5 | mA
mA | | Gate emitter cut off current $Vce=0V,Vge=20V,Tvj=25C$ I_{ges} 400 nA | Gate emitter cut off current | Vce=0V,Vge=20V,Tvj=25C | | | I _{ges} | | | 400 | nA | | Turn on delay time | Ic=150A, Vcc=600V
Vge=+/15V,Rg=8.2Ω,Tvj=25C
Vge=+/-15V,Rg=8.2Ω,Tvj=125C | $t_{ m d,on}$ | 250
300 | nsec
nsec | |--------------------------------|--|------------------|------------|--------------| | Rise time | Ic=150A, Vcc=600V
Vge=+/-15V,Rg=8.2Ω,Tvj=25C
Vge=+/-15V,Rg=8.2Ω,Tvj=125C | tr | 90
100 | nsec
nsec | | Turn off delay time | Ic=150A, Vcc=600V
Vge=+/-15V,Rg=8.2Ω,Tvj=25C
Vge=+/-15V,Rg=8.2Ω,Tvj=125C | $t_{ m d,off}$ | 550
650 | nsec
nsec | | Fall time | Ic=150A, Vcc=600V
Vge=+/-15V,Rg=8.2Ω,Tvj=25C
Vge=+/-15V,Rg=8.2Ω,Tvj-12 | $t_{ m f}$ | 130
160 | nsec
nsec | | Turn energy loss per pulse | Ic=150A,Vce=600V,Vge=5V
Rge=8.2Ω,L=80nH 1 vj=125C | E _{on} | 11 | mJ | | Turn off energy loss per pulse | Ic=150A,V e=c00 V Vge=15V
Rge=8 2Ω,L=20n.I Tyi=1.5C | E _{off} | 24 | mJ | | SC Data | tp≤1 cuse Vge≤15V √c =900V,
Vce _{(max)=} Vces-Lσdi/d Tvj=125C | I_{sc} | 600 | A | | Stray Module inductance | 100 | $L_{\sigma ce}$ | 40 | nН | | Terminal-chip room tange | | R _c | 1.2 | mΩ | #### **Diode characteristics** | Forward voltage | Ic=150A,Vge=0V, Tc=25C
Ic=150A,Vge=0V, Tc=125C | $V_{\rm f}$ | 1.65
1.65 | 2.1 | V
V | |-------------------------------|---|-------------|--------------|-----|----------| | Peak reverse recovery current | If=150A, -di/dt=1500A/µsec
Vce=600V,Vge=-15V,Tvj=25C
Vce=600V,Vge=-15V,Tvj=125C | I_{rm} | 110
140 | | A
A | | Recovered charge | If=150A, -di/dt=1500A/µsec
Vce=600V,Vge=-15V,Tvj=25C
Vce=600V,Vge=-15V,Tvj=125C | Qr | 15
28 | | μC
μC | | Reverse recovery energy | If=150A, -di/dt=1500A/μsec
Vce=600V,Vge=-10V,Tvj=25C
Vce=600V,Vge=-10V,Tvj=125C | E_{rec} | 7.0
14 | | mJ
mJ | | Thermal Properties | | | Min | Typ | Max | | |-------------------------------------|---------------|-----------------------|-----|------|--------------|-----| | Thermal resistance junction to case | Igbt
Diode | $R_{ heta J ext{-}C}$ | | | 0.15
0.26 | K/W | | Thermal resistance case to heatsink | | R _{0C-hs} | | 0.03 | | K/W | | Maximum junction temperature | | Tvj | | | 175 | С | | Maximum operating temperature | | Тор | -55 | | 175 | С | | Storage Temperature | | Tstg | -55 | 7 | 175 | С | | | | | 5/ | | | | # output characteristic IGBT-inverter (typical) $I_C = f(V_{CE})$ $T_{vJ} = 125^{\circ}C$ Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders Vge [V] switching losses IGBT-inverter (typical) E_{on} = f (Ic), E_{off} = f (Ic) V_{GE} = ± 15 V, R_{Gon} = 8,2 Ω , R_{Goff} = 8,2 Ω , V_{CE} = 600 V Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders R_G [Ω] ## reverse bias safe operating area IGBT-inv. (RBSOA) Ic = f (Vcz) $V_{GE} = \pm 15 V$, $R_{Goff} = 8,2 \Omega$, $T_{vI} = 125^{\circ}C$ ## forward maracterinac of dical miverter (typical) #### CIRCUIT DIAGRAM